Ad
related to: proof generator geometrykutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The Isabelle [a] automated theorem prover is a higher-order logic (HOL) theorem prover, written in Standard ML and Scala.As a Logic for Computable Functions (LCF) style theorem prover, it is based on a small logical core (kernel) to increase the trustworthiness of proofs without requiring, yet supporting, explicit proof objects.
A computer-assisted proof is a mathematical proof that has been at least partially generated by computer. Most computer-aided proofs to date have been implementations of large proofs-by-exhaustion of a mathematical theorem. The idea is to use a computer program to perform lengthy computations, and to provide a proof that the result of these ...
In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human–machine collaboration. This involves some sort of interactive proof editor, or other interface , with which a human can guide the search for proofs, the details of which are ...
Since the proofs generated by automated theorem provers are typically very large, the problem of proof compression is crucial, and various techniques aiming at making the prover's output smaller, and consequently more easily understandable and checkable, have been developed. Proof assistants require a human user to give hints to the system ...
Axiomatic proofs have been used in mathematics since the famous Ancient Greek textbook, Euclid's Elements of Geometry, c. 300 BC. But the first known fully formalized proof system that thereby qualifies as a Hilbert system dates back to Gottlob Frege's 1879 Begriffsschrift.
The first proof of the fold-and-cut theorem, solving the problem, was published in 1999 by Erik Demaine, Martin Demaine, and Anna Lubiw and was solved using straight skeleton method. [ 8 ] [ 9 ] Solutions
Hilbert proved the theorem (for the special case of multivariate polynomials over a field) in the course of his proof of finite generation of rings of invariants. [1] The theorem is interpreted in algebraic geometry as follows: every algebraic set is the set of the common zeros of finitely many polynomials.
In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the creation of a larger collection of objects, called the generated set .
Ad
related to: proof generator geometrykutasoftware.com has been visited by 10K+ users in the past month