Search results
Results from the WOW.Com Content Network
Layers of Pascal's pyramid derived from coefficients in an upside-down ternary plot of the terms in the expansions of the powers of a trinomial – the number of terms is clearly a triangular number. In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by
where is the number of terms in the progression and is the common difference between terms. The formula is essentially the same as the formula for the standard deviation of a discrete uniform distribution , interpreting the arithmetic progression as a set of equally probable outcomes.
In statistical mechanics and combinatorics, if one has a number distribution of labels, then the multinomial coefficients naturally arise from the binomial coefficients. Given a number distribution {n i} on a set of N total items, n i represents the number of items to be given the label i. (In statistical mechanics i is the label of the energy ...
By taking conjugates, the number p k (n) of partitions of n into exactly k parts is equal to the number of partitions of n in which the largest part has size k. The function p k (n) satisfies the recurrence p k (n) = p k (n − k) + p k−1 (n − 1) with initial values p 0 (0) = 1 and p k (n) = 0 if n ≤ 0 or k ≤ 0 and n and k are not both ...
The differences between the terms are 2, 4, 6, 8, 10... For n = 40, it produces a square number, 1681, which is equal to 41 × 41, the smallest composite number for this formula for n ≥ 0. If 41 divides n, it divides P(n) too. Furthermore, since P(n) can be written as n(n + 1) + 41, if 41 divides n + 1 instead, it also divides P(n).
The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
Declarative solutions are easier to understand than imperative solutions, [12] and there has been a long-term trend from imperative to declarative methods. [13] [14] Formula calculators are part of this trend. Many software tools for the general user, such as spreadsheets, are declarative. Formula calculators are examples of such tools.