enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chaos theory - Wikipedia

    en.wikipedia.org/wiki/Chaos_theory

    The main catalyst for the development of chaos theory was the electronic computer. Much of the mathematics of chaos theory involves the repeated iteration of simple mathematical formulas, which would be impractical to do by hand. Electronic computers made these repeated calculations practical, while figures and images made it possible to ...

  3. Patterns in nature - Wikipedia

    en.wikipedia.org/wiki/Patterns_in_nature

    [23] [24] Visual patterns in nature find explanations in chaos theory, fractals, logarithmic spirals, topology and other mathematical patterns. For example, L-systems form convincing models of different patterns of tree growth. [19] The laws of physics apply the abstractions of mathematics to the real world, often as if it were perfect.

  4. Coastline paradox - Wikipedia

    en.wikipedia.org/wiki/Coastline_paradox

    More than a decade after Richardson completed his work, Benoit Mandelbrot developed a new branch of mathematics, fractal geometry, to describe just such non-rectifiable complexes in nature as the infinite coastline. [10] His own definition of the new figure serving as the basis for his study is: [11] I coined fractal from the Latin adjective ...

  5. Pickover stalk - Wikipedia

    en.wikipedia.org/wiki/Pickover_stalk

    Example of Pickover stalks in a detail of the Mandelbrot set Pickover stalks are certain kinds of details to be found empirically in the Mandelbrot set , in the study of fractal geometry . [ 1 ] They are so named after the researcher Clifford Pickover , whose "epsilon cross" method was instrumental in their discovery.

  6. Fractal - Wikipedia

    en.wikipedia.org/wiki/Fractal

    Fractal geometry lies within the mathematical branch of measure theory. One way that fractals are different from finite geometric figures is how they scale . Doubling the edge lengths of a filled polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the conventional dimension ...

  7. Fractal curve - Wikipedia

    en.wikipedia.org/wiki/Fractal_curve

    Starting in the 1950s Benoit Mandelbrot and others have studied self-similarity of fractal curves, and have applied theory of fractals to modelling natural phenomena. Self-similarity occurs, and analysis of these patterns has found fractal curves in such diverse fields as economics, fluid mechanics, geomorphology, human physiology and linguistics.

  8. Correlation dimension - Wikipedia

    en.wikipedia.org/wiki/Correlation_dimension

    For example, if we have a set of random points on the real number line between 0 and 1, the correlation dimension will be ν = 1, while if they are distributed on say, a triangle embedded in three-dimensional space (or m-dimensional space), the correlation dimension will be ν = 2. This is what we would intuitively expect from a measure of ...

  9. Sierpiński carpet - Wikipedia

    en.wikipedia.org/wiki/Sierpiński_carpet

    So, for example, any point of the circle is a local cut point. In the same paper Whyburn gave another characterization of the Sierpiński carpet. Recall that a continuum is a nonempty connected compact metric space. Suppose X is a continuum embedded in the plane.