Search results
Results from the WOW.Com Content Network
The generalized Hough transform (GHT), introduced by Dana H. Ballard in 1981, is the modification of the Hough transform using the principle of template matching. [1] The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to ...
The generalization of the Hough transform for detecting analytical shapes in spaces having any dimensionality was proposed by Fernandes and Oliveira. [12] In contrast to other Hough transform-based approaches for analytical shapes, Fernandes' technique does not depend on the shape one wants to detect nor on the input data type.
Hough transforms are techniques for object detection, a critical step in many implementations of computer vision, or data mining from images. Specifically, the Randomized Hough transform is a probabilistic variant to the classical Hough transform, and is commonly used to detect curves (straight line, circle, ellipse, etc.) [1] The basic idea of Hough transform (HT) is to implement a voting ...
The Hough transform [3] can be used to detect lines and the output is a parametric description of the lines in an image, for example ρ = r cos(θ) + c sin(θ). [1] If there is a line in a row and column based image space, it can be defined ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle of the perpendicular projection from the origin to the ...
Therefore, one expects that line detection algorithms should successfully detect these lines in practice. Indeed, the following figure demonstrates Hough transform-based line detection applied to a perspective-transformed chessboard image. Clearly, the Hough transform is able to accurately detect the lines induced by the board squares.
For each of the lines, the perpendicular which also bisects the origin is found. The length and angle of the support vector are then found. The values are shown in the table below the diagram. This is repeated for each of the three points being transformed. The results are then plotted as a graph, sometimes known as a hough space plot.
He also popularized the use of the generalised hough transform in computer vision in his paper "Generalizing the Hough Transform to Detect Arbitrary Shapes." [ 3 ] He is also known as a proponent of active vision techniques for computer vision systems [ 4 ] as well as approaches to understanding human vision.
If Hough transforms are used to detect lines and ellipses, then thinning could give much better results. If the edge happens to be the boundary of a region, then thinning could easily give the image parameters like perimeter without much algebra. There are many popular algorithms used to do this, one such is described below: