Search results
Results from the WOW.Com Content Network
After the wave breaks, it becomes a wave of translation and erosion of the ocean bottom intensifies. Cnoidal waves are exact periodic solutions to the Korteweg–de Vries equation in shallow water, that is, when the wavelength of the wave is much greater than the depth of the water.
Shallow-water equations can be used to model Rossby and Kelvin waves in the atmosphere, rivers, lakes and oceans as well as gravity waves in a smaller domain (e.g. surface waves in a bath). In order for shallow-water equations to be valid, the wavelength of the phenomenon they are supposed to model has to be much larger than the depth of the ...
Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.
The Camassa–Holm equation can be written as the system of equations: [2] + + =, = + + (), with p the (dimensionless) pressure or surface elevation. This shows that the Camassa–Holm equation is a model for shallow water waves with non-hydrostatic pressure and a water layer on a horizontal bed.
Boussinesq approximation (water waves) – nonlinear theory for waves in shallow water. Capillary wave – surface waves under the action of surface tension; Cnoidal wave – nonlinear periodic waves in shallow water, solutions of the Korteweg–de Vries equation; Mild-slope equation – refraction and diffraction of surface waves over varying ...
This can be formulated as a shoaling coefficient relative to the wave height in deep water. [5] [4] For shallow water, when the wavelength is much larger than the water depth – in case of a constant ray distance (i.e. perpendicular wave incidence on a coast with parallel depth contours) – wave shoaling satisfies Green's law:
The initial cosine wave evolves into a train of solitary-type waves. Two-soliton solution to the KdV equation. In mathematics, the Korteweg–De Vries (KdV) equation is a partial differential equation (PDE) which serves as a mathematical model of waves on shallow water surfaces.
The simplest equations that describe the dynamics of Kelvin waves are the linearized shallow water equations for homogeneous, in-viscid flows. These equations can be linearized for a small Rossby number , no frictional forces and under the assumption that the wave height is small compared to the water depth ( η << h {\displaystyle \eta <<h} ).