enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elementary function - Wikipedia

    en.wikipedia.org/wiki/Elementary_function

    In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).

  3. BKM algorithm - Wikipedia

    en.wikipedia.org/wiki/BKM_algorithm

    The BKM algorithm is a shift-and-add algorithm for computing elementary functions, first published in 1994 by Jean-Claude Bajard, Sylvanus Kla, and Jean-Michel Muller.BKM is based on computing complex logarithms (L-mode) and exponentials (E-mode) using a method similar to the algorithm Henry Briggs used to compute logarithms.

  4. Liouville's theorem (differential algebra) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    Thus, on an intuitive level, the theorem states that the only elementary antiderivatives are the "simple" functions plus a finite number of logarithms of "simple" functions. A proof of Liouville's theorem can be found in section 12.4 of Geddes, et al. [4] See Lützen's scientific bibliography for a sketch of Liouville's original proof [5 ...

  5. László Kalmár - Wikipedia

    en.wikipedia.org/wiki/László_Kalmár

    Kalmar defined what are known as elementary functions, number-theoretic functions (i.e. those based on the natural numbers) built up from the notions of composition and variables, the constants 0 and 1, repeated addition + of the constants, proper subtraction ∸, bounded summation and bounded product (Kleene 1952:526).

  6. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.

  7. Abramowitz and Stegun - Wikipedia

    en.wikipedia.org/wiki/Abramowitz_and_Stegun

    Michael Danos and Johann Rafelski edited the Pocketbook of Mathematical Functions, published by Verlag Harri Deutsch in 1984. [14] [15] The book is an abridged version of Abramowitz's and Stegun's Handbook, retaining most of the formulas (except for the first and the two last original chapters, which were dropped), but reducing the numerical tables to a minimum, [14] which, by this time, could ...

  8. Elementary recursive function - Wikipedia

    en.wikipedia.org/wiki/Elementary_recursive_function

    Lower elementary recursive functions follow the definitions as above, except that bounded product is disallowed. That is, a lower elementary recursive function must be a zero, successor, or projection function, a composition of other lower elementary recursive functions, or the bounded sum of another lower elementary recursive function.

  9. Gauss's continued fraction - Wikipedia

    en.wikipedia.org/wiki/Gauss's_continued_fraction

    In complex analysis, Gauss's continued fraction is a particular class of continued fractions derived from hypergeometric functions.It was one of the first analytic continued fractions known to mathematics, and it can be used to represent several important elementary functions, as well as some of the more complicated transcendental functions.