Search results
Results from the WOW.Com Content Network
Two types of convective heat transfer may be distinguished: Free or natural convection: when fluid motion is caused by buoyancy forces that result from the density variations due to variations of thermal ±temperature in the fluid. In the absence of an internal source, when the fluid is in contact with a hot surface, its molecules separate and ...
The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference. Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer.
Convection is the heat transfer by the macroscopic movement of a fluid. This type of transfer takes place in a forced-air furnace and in weather systems, for example. Heat transfer by radiation occurs when microwaves, infrared radiation, visible light, or another form of electromagnetic radiation is emitted or absorbed. An obvious example is ...
Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [10]
Natural convection is a flow whose motion is caused by some parts of a fluid being heavier than other parts. In most cases this leads to natural circulation: the ability of a fluid in a system to circulate continuously under gravity, with transfer of heat energy. The driving force for natural convection is gravity.
The convective heat transfer between a uniformly heated wall and the working fluid is described by Newton's law of cooling: = where represents the heat flux, represents the proportionally constant called the heat transfer coefficient, represents the wall temperature and represents the fluid temperature.
Natural or free convection is a function of Grashof and Prandtl numbers. The complexities of free convection heat transfer make it necessary to mainly use empirical relations from experimental data. [12] Heat transfer is analyzed in packed beds, nuclear reactors and heat exchangers.
Simply adding or subtracting the heat transfer coefficients for forced and natural convection will yield inaccurate results for mixed convection. Also, as the influence of buoyancy on the heat transfer sometimes even exceeds the influence of the free stream, mixed convection should not be treated as pure forced convection.