enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    To test the divisibility of a number by a power of 2 or a power of 5 (2 n or 5 n, in which n is a positive integer), one only need to look at the last n digits of that number. To test divisibility by any number expressed as the product of prime factors p 1 n p 2 m p 3 q {\displaystyle p_{1}^{n}p_{2}^{m}p_{3}^{q}} , we can separately test for ...

  3. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    Given an integer n (n refers to "the integer to be factored"), the trial division consists of systematically testing whether n is divisible by any smaller number. Clearly, it is only worthwhile to test candidate factors less than n, and in order from two upwards because an arbitrary n is more likely to be divisible by two than by three, and so on.

  4. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. [2] Once all the multiples of each discovered prime have been marked as composites, the remaining unmarked numbers are primes.

  5. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The first deterministic primality test significantly faster than the naive methods was the cyclotomy test; its runtime can be proven to be O((log n) c log log log n), where n is the number to test for primality and c is a constant independent of n. Many further improvements were made, but none could be proven to have polynomial running time.

  6. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.

  7. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    We can use this fact to prove part of a famous result: for any prime p such that p ≡ 1 (mod 4), the number (−1) is a square (quadratic residue) mod p. For this, suppose p = 4k + 1 for some integer k. Then we can take m = 2k above, and we conclude that (m!) 2 is congruent to (−1) (mod p).

  8. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Another proof, by the Swiss mathematician Leonhard Euler, relies on the fundamental theorem of arithmetic: that every integer has a unique prime factorization.What Euler wrote (not with this modern notation and, unlike modern standards, not restricting the arguments in sums and products to any finite sets of integers) is equivalent to the statement that we have [9]

  9. Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Chinese_remainder_theorem

    In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1).