enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    The Frobenius norm is an extension of the Euclidean norm to and comes from the Frobenius inner product on the space of all matrices. The Frobenius norm is sub-multiplicative and is very useful for numerical linear algebra. The sub-multiplicativity of Frobenius norm can be proved using Cauchy–Schwarz inequality.

  3. Total least squares - Wikipedia

    en.wikipedia.org/wiki/Total_least_squares

    where [] is the augmented matrix with E and F side by side and ‖ ‖ is the Frobenius norm, the square root of the sum of the squares of all entries in a matrix and so equivalently the square root of the sum of squares of the lengths of the rows or columns of the matrix. This can be rewritten as

  4. Low-rank approximation - Wikipedia

    en.wikipedia.org/wiki/Low-rank_approximation

    In mathematics, low-rank approximation refers to the process of approximating a given matrix by a matrix of lower rank. More precisely, it is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.

  5. Frobenius normal form - Wikipedia

    en.wikipedia.org/wiki/Frobenius_normal_form

    On the other hand, this makes the Frobenius normal form rather different from other normal forms that do depend on factoring the characteristic polynomial, notably the diagonal form (if A is diagonalizable) or more generally the Jordan normal form (if the characteristic polynomial splits into linear factors). For instance, the Frobenius normal ...

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Since the norm is a nonnegative integer and decreases with every step, the Euclidean algorithm for Gaussian integers ends in a finite number of steps. [144] The final nonzero remainder is gcd( α , β ) , the Gaussian integer of largest norm that divides both α and β ; it is unique up to multiplication by a unit, ±1 or ± i .

  7. Orthogonal Procrustes problem - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_Procrustes_problem

    where ‖ ‖ denotes the Frobenius norm. This is a special case of Wahba's problem (with identical weights; instead of considering two matrices, in Wahba's problem the columns of the matrices are considered as individual vectors). Another difference is that Wahba's problem tries to find a proper rotation matrix instead of just an orthogonal one.

  8. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    The solution with minimum Euclidean norm is ⁠. ⁠ [27] This result is easily extended to systems with multiple right-hand sides, when the Euclidean norm is replaced by the Frobenius norm. Let ⁠ B ∈ K m × p {\displaystyle B\in \mathbb {K} ^{m\times p}} ⁠ .

  9. Frobenius inner product - Wikipedia

    en.wikipedia.org/wiki/Frobenius_inner_product

    In mathematics, the Frobenius inner product is a binary operation that takes two matrices and returns a scalar.It is often denoted , .The operation is a component-wise inner product of two matrices as though they are vectors, and satisfies the axioms for an inner product.