enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mean shift - Wikipedia

    en.wikipedia.org/wiki/Mean_shift

    Mean shift is a non-parametric feature-space mathematical analysis technique for locating the maxima of a density function, a so-called mode-seeking algorithm. [1] Application domains include cluster analysis in computer vision and image processing .

  3. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    The scale-invariant feature transform (SIFT) is a computer vision algorithm to detect, describe, and match local features in images, invented by David Lowe in 1999. [1] Applications include object recognition , robotic mapping and navigation, image stitching , 3D modeling , gesture recognition , video tracking , individual identification of ...

  4. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    An advantage of mean shift clustering over k-means is the detection of an arbitrary number of clusters in the data set, as there is not a parameter determining the number of clusters. Mean shift can be much slower than k-means, and still requires selection of a bandwidth parameter.

  5. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A shift-invariant neural network was proposed by Wei Zhang et al. for image character recognition in 1988. [ 14 ] [ 15 ] It is a modified Neocognitron by keeping only the convolutional interconnections between the image feature layers and the last fully connected layer.

  6. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines, logistic regression, and artificial neural networks).

  7. Image registration - Wikipedia

    en.wikipedia.org/wiki/Image_registration

    Image registration has applications in remote sensing (cartography updating), and computer vision. Due to the vast range of applications to which image registration can be applied, it is impossible to develop a general method that is optimized for all uses.

  8. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more.This is accomplished by doing a convolution between the kernel and an image.

  9. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    6 different real multiple choice-based exams (735 answer sheets and 33,540 answer boxes) to evaluate computer vision techniques and systems developed for multiple choice test assessment systems. None 735 answer sheets and 33,540 answer boxes Images and .mat file labels Development of multiple choice test assessment systems 2017 [209] [210]