enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bertrand–Diguet–Puiseux theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand–Diguet–Puiseux...

    In the mathematical study of the differential geometry of surfaces, the Bertrand–Diguet–Puiseux theorem expresses the Gaussian curvature of a surface in terms of the circumference of a geodesic circle, or the area of a geodesic disc.

  3. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  4. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The curvature is the norm of the derivative of T with respect to s. By using the above formula and the chain rule this derivative and its norm can be expressed in terms of γ′ and γ″ only, with the arc-length parameter s completely eliminated, giving the above formulas for the curvature.

  5. Euler's theorem (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem...

    In the mathematical field of differential geometry, Euler's theorem is a result on the curvature of curves on a surface. The theorem establishes the existence of principal curvatures and associated principal directions which give the directions in which the surface curves the most and the least.

  6. Cesàro equation - Wikipedia

    en.wikipedia.org/wiki/Cesàro_equation

    In geometry, the Cesàro equation of a plane curve is an equation relating the curvature (κ) at a point of the curve to the arc length (s) from the start of the curve to the given point. It may also be given as an equation relating the radius of curvature (R) to arc length. (These are equivalent because R = ⁠ 1 / κ ⁠.)

  7. Gauss–Bonnet theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Bonnet_theorem

    In the mathematical field of differential geometry, the Gauss–Bonnet theorem (or Gauss–Bonnet formula) is a fundamental formula which links the curvature of a surface to its underlying topology. In the simplest application, the case of a triangle on a plane , the sum of its angles is 180 degrees. [ 1 ]

  8. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  9. Mean curvature - Wikipedia

    en.wikipedia.org/wiki/Mean_curvature

    where the normal chosen affects the sign of the curvature. The sign of the curvature depends on the choice of normal: the curvature is positive if the surface curves "towards" the normal. The formula above holds for surfaces in 3D space defined in any manner, as long as the divergence of the unit normal may be calculated. Mean Curvature may ...