Search results
Results from the WOW.Com Content Network
Argon compounds, the chemical compounds that contain the element argon, are rarely encountered due to the inertness of the argon atom. However, compounds of argon have been detected in inert gas matrix isolation, cold gases, and plasmas, and molecular ions containing argon have been made and also detected in space.
The Goldschmidt classification, [1] [2] developed by Victor Goldschmidt (1888–1947), is a geochemical classification which groups the chemical elements within the Earth according to their preferred host phases into lithophile (rock-loving), siderophile (iron-loving), chalcophile (sulfide ore-loving or chalcogen-loving), and atmophile (gas-loving) or volatile (the element, or a compound in ...
Argonium (also called the argon hydride cation, the hydridoargon(1+) ion, or protonated argon; chemical formula ArH +) is a cation combining a proton and an argon atom. It can be made in an electric discharge , and was the first noble gas molecular ion to be found in interstellar space.
Argon is the most abundant noble gas in Earth's crust, comprising 0.00015% of the crust. Nearly all argon in Earth's atmosphere is radiogenic argon-40, derived from the decay of potassium-40 in Earth's crust. In the universe, argon-36 is by far the most common argon isotope, as it is the most easily produced by stellar nucleosynthesis in ...
The abundance of argon, on the other hand, is increased as a result of the beta decay of potassium-40, also found in the Earth's crust, to form argon-40, which is the most abundant isotope of argon on Earth despite being relatively rare in the Solar System. This process is the basis for the potassium-argon dating method. [72]
[17] [18] The compound can exist in low temperature argon matrices for experimental studies, and it has also been studied computationally. [18] Argon hydride ion [ArH] + was obtained in the 1970s. [19] This molecular ion has also been identified in the Crab nebula, based on the frequency of its light emissions. [20]
These clusters are made by capturing an argon atom in a liquid helium nanodroplet, and then ionising with high speed electrons. He + is formed, which can transfer charge to argon and then form a cluster ion when the rest of the droplet evaporates. [75] NeHe + n can be made by ultraviolet photoionisation. Clusters only contain one neon atom.
Cs > K > Na > Li > alkaline earth metals, i.e., alkali metals > alkaline earth metals, the same as the reverse order of the (gas-phase) ionization energies. This is borne out by the extraction of metallic lithium by the electrolysis of a eutectic mixture of lithium chloride and potassium chloride: lithium metal is formed at the cathode, not ...