enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A Bergman space is an example of a reproducing kernel Hilbert space, which is a Hilbert space of functions along with a kernel K(ζ, z) that verifies a reproducing property analogous to this one. The Hardy space H 2 ( D ) also admits a reproducing kernel, known as the Szegő kernel . [ 37 ]

  3. Bergman kernel - Wikipedia

    en.wikipedia.org/wiki/Bergman_kernel

    where H(D) is the space of holomorphic functions in D. Then L 2,h (D) is a Hilbert space: it is a closed linear subspace of L 2 (D), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D

  4. Quantum configuration space - Wikipedia

    en.wikipedia.org/wiki/Quantum_configuration_space

    The single point denoted in this space is represented by the set of functions () where and represents an index set. In quantum field theory , it is expected that the Hilbert space is also the L 2 {\displaystyle L^{2}} space on the configuration space of the field, which is infinite dimensional, with respect to some Borel measure naturally defined.

  5. Grassmann number - Wikipedia

    en.wikipedia.org/wiki/Grassmann_number

    In general, a Grassmann algebra on n generators can be represented by 2 n × 2 n square matrices. Physically, these matrices can be thought of as raising operators acting on a Hilbert space of n identical fermions in the occupation number basis. Since the occupation number for each fermion is 0 or 1, there are 2 n possible basis states ...

  6. Spectral triple - Wikipedia

    en.wikipedia.org/wiki/Spectral_triple

    The local index formula [2] expresses the pairing of the K-group of the manifold with this K-cycle in two ways: the 'analytic/global' side involves the usual trace on the Hilbert space and commutators of functions with the phase operator (which corresponds to the 'index' part of the index theorem), while the 'geometric/local' side involves the ...

  7. Rigged Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Rigged_Hilbert_space

    A rigged Hilbert space is a pair (H, Φ) with H a Hilbert space, Φ a dense subspace, such that Φ is given a topological vector space structure for which the inclusion map i is continuous. Identifying H with its dual space H * , the adjoint to i is the map i ∗ : H = H ∗ → Φ ∗ . {\displaystyle i^{*}:H=H^{*}\to \Phi ^{*}.}

  8. Direct integral - Wikipedia

    en.wikipedia.org/wiki/Direct_integral

    The simplest example of a direct integral are the L 2 spaces associated to a (σ-finite) countably additive measure μ on a measurable space X.Somewhat more generally one can consider a separable Hilbert space H and the space of square-integrable H-valued functions

  9. Fundamental theorem of Hilbert spaces - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    If B is non-negative then it induces a canonical seminorm on H, denoted by ‖ ‖, defined by x ↦ B(x, x) 1/2, where if B is also positive definite then this map is a norm. [1] This canonical semi-norm makes every pre-Hilbert space into a seminormed space and every Hausdorff pre-Hilbert space into a normed space.