enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    Then, 8| E | > | V | 2 /8 when | E |/| V | 2 > 1/64, that is the adjacency list representation occupies more space than the adjacency matrix representation when d > 1/64. Thus a graph must be sparse enough to justify an adjacency list representation. Besides the space trade-off, the different data structures also facilitate different operations.

  3. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.

  4. Tarjan's strongly connected components algorithm - Wikipedia

    en.wikipedia.org/wiki/Tarjan's_strongly_connected...

    [1]: 157 A common variation is to instead use v.lowlink := min(v.lowlink, w.lowlink). [3] [4] This modified algorithm does not compute the lowlink numbers as Tarjan defined them, but the test v.lowlink = v.index still identifies root nodes of strongly connected components, and therefore the overall algorithm remains valid. [2]

  5. Parallel breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Parallel_breadth-first_search

    In the CSR, all adjacencies of a vertex is sorted and compactly stored in a contiguous chunk of memory, with adjacency of vertex i+1 next to the adjacency of i. In the example on the left, there are two arrays, C and R. Array C stores the adjacency lists of all nodes.

  6. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    Input: A graph G and a starting vertex root of G. Output: Goal state.The parent links trace the shortest path back to root [9]. 1 procedure BFS(G, root) is 2 let Q be a queue 3 label root as explored 4 Q.enqueue(root) 5 while Q is not empty do 6 v := Q.dequeue() 7 if v is the goal then 8 return v 9 for all edges from v to w in G.adjacentEdges(v) do 10 if w is not labeled as explored then 11 ...

  7. Edmonds–Karp algorithm - Wikipedia

    en.wikipedia.org/wiki/Edmonds–Karp_algorithm

    In computer science, the Edmonds–Karp algorithm is an implementation of the Ford–Fulkerson method for computing the maximum flow in a flow network in (| | | |) time. The algorithm was first published by Yefim Dinitz in 1970, [1] [2] and independently published by Jack Edmonds and Richard Karp in 1972. [3]

  8. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    1 S ← empty sequence 2 u ← target 3 if prev[u] is defined or u = source: // Proceed if the vertex is reachable 4 while u is defined: // Construct the shortest path with a stack S 5 insert u at the beginning of S // Push the vertex onto the stack 6 u ← prev[u] // Traverse from target to source

  9. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    In computer science, iterative deepening search or more specifically iterative deepening depth-first search [1] (IDS or IDDFS) is a state space/graph search strategy in which a depth-limited version of depth-first search is run repeatedly with increasing depth limits until the goal is found.