Search results
Results from the WOW.Com Content Network
Then, 8| E | > | V | 2 /8 when | E |/| V | 2 > 1/64, that is the adjacency list representation occupies more space than the adjacency matrix representation when d > 1/64. Thus a graph must be sparse enough to justify an adjacency list representation. Besides the space trade-off, the different data structures also facilitate different operations.
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
The brute force algorithm finds a 4-clique in this 7-vertex graph (the complement of the 7-vertex path graph) by systematically checking all C(7,4) = 35 4-vertex subgraphs for completeness. In computer science , the clique problem is the computational problem of finding cliques (subsets of vertices, all adjacent to each other, also called ...
[8] [9] Intersection graphs An interval graph is the intersection graph of a set of line segments in the real line. It may be given an adjacency labeling scheme in which the points that are endpoints of line segments are numbered from 1 to 2n and each vertex of the graph is represented by the numbers of the two endpoints of its corresponding ...
In the CSR, all adjacencies of a vertex is sorted and compactly stored in a contiguous chunk of memory, with adjacency of vertex i+1 next to the adjacency of i. In the example on the left, there are two arrays, C and R. Array C stores the adjacency lists of all nodes.
Input: A graph G and a starting vertex root of G. Output: Goal state.The parent links trace the shortest path back to root [9]. 1 procedure BFS(G, root) is 2 let Q be a queue 3 label root as explored 4 Q.enqueue(root) 5 while Q is not empty do 6 v := Q.dequeue() 7 if v is the goal then 8 return v 9 for all edges from v to w in G.adjacentEdges(v) do 10 if w is not labeled as explored then 11 ...
The abstract data type (ADT) can be represented in a number of ways, including a list of parents with pointers to children, a list of children with pointers to parents, or a list of nodes and a separate list of parent-child relations (a specific type of adjacency list).
1 S ← empty sequence 2 u ← target 3 if prev[u] is defined or u = source: // Proceed if the vertex is reachable 4 while u is defined: // Construct the shortest path with a stack S 5 insert u at the beginning of S // Push the vertex onto the stack 6 u ← prev[u] // Traverse from target to source