Search results
Results from the WOW.Com Content Network
Advanced glycation end products (AGEs) are proteins or lipids that become glycated as a result of exposure to sugars. [1] They are a bio-marker implicated in aging and the development, or worsening, of many degenerative diseases , such as diabetes , atherosclerosis , chronic kidney disease , and Alzheimer's disease .
N(6)-Carboxymethyllysine (CML), also known as N ε-(carboxymethyl)lysine, is an advanced glycation endproduct (AGE). CML has been the most used marker for AGEs in food analysis. CML has been the most used marker for AGEs in food analysis.
Pages in category "Advanced glycation end-products" The following 8 pages are in this category, out of 8 total. This list may not reflect recent changes. A.
Schematic of the relation between an immunoglobulin and RAGE Schematic of the RAGE gene and its products. RAGE (receptor for advanced glycation endproducts), also called AGER, is a 35 kilodalton transmembrane receptor [5] of the immunoglobulin super family which was first characterized in 1992 by Neeper et al. [6] Its name comes from its ability to bind advanced glycation endproducts (), which ...
Sorbitol may also glycate nitrogens on proteins, such as collagen, and the products of these glycations are referred-to as AGEs - advanced glycation end-products. AGEs are thought to cause disease in the human body, one effect of which is mediated by RAGE (receptor for advanced glycation end-products) and the ensuing inflammatory responses induced.
Glucosepane is a lysine-arginine protein cross-linking product and advanced glycation end product (AGE) derived from D-glucose. [1] It is an irreversible, covalent cross-link product that has been found to make intermolecular and intramolecular cross-links in the collagen of the extracellular matrix (ECM) and crystallin of the eyes. [2]
Pimagedine was under development as a drug for kidney diseases by the pharmaceutical company Alteon (now known Synvista Therapeutics Inc.) that was founded in 1986. [2] In 1987, Alteon acquired a license to intellectual property relating to AGE inhibition from Rockefeller University. [3]
The cross-linking theory proposes that advanced glycation end-products (stable bonds formed by the binding of glucose to proteins) and other aberrant cross-links accumulating in aging tissues is the cause of aging. The crosslinking of proteins disables their biological functions.