Search results
Results from the WOW.Com Content Network
Paging obviously benefits from temporal and spatial locality. A cache is a simple example of exploiting temporal locality, because it is a specially designed, faster but smaller memory area, generally used to keep recently referenced data and data near recently referenced data, which can lead to potential performance increases.
LIRS (Low Inter-reference Recency Set) is a page replacement algorithm with an improved performance over LRU (Least Recently Used) and many other newer replacement algorithms. [1] This is achieved by using "reuse distance" [ 2 ] as the locality metric for dynamically ranking accessed pages to make a replacement decision.
In computing, a memory access pattern or IO access pattern is the pattern with which a system or program reads and writes memory on secondary storage.These patterns differ in the level of locality of reference and drastically affect cache performance, [1] and also have implications for the approach to parallelism [2] [3] and distribution of workload in shared memory systems. [4]
Most modern CPUs are so fast that for most program workloads, the bottleneck is the locality of reference of memory accesses and the efficiency of the caching and memory transfer between different levels of the hierarchy [citation needed]. As a result, the CPU spends much of its time idling, waiting for memory I/O to complete.
Earlier graphics processing units (GPUs) often had limited read-only texture caches and used swizzling to improve 2D locality of reference. Cache misses would drastically affect performance, e.g. if mipmapping was not used. Caching was important to leverage 32-bit (and wider) transfers for texture data that was often as little as 4 bits per pixel.
In computing, cache replacement policies (also known as cache replacement algorithms or cache algorithms) are optimizing instructions or algorithms which a computer program or hardware-maintained structure can utilize to manage a cache of information. Caching improves performance by keeping recent or often-used data items in memory locations ...
This is primarily due to CPU caching which exploits spatial locality of reference. [1] In addition, contiguous access makes it possible to use SIMD instructions that operate on vectors of data. In some media such as magnetic-tape data storage , accessing sequentially is orders of magnitude faster than nonsequential access.
A hash-rehash cache and a column-associative cache are examples of a pseudo-associative cache. In the common case of finding a hit in the first way tested, a pseudo-associative cache is as fast as a direct-mapped cache, but it has a much lower conflict miss rate than a direct-mapped cache, closer to the miss rate of a fully associative cache.