enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Comparison of programming languages (array) - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_programming...

    In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.

  3. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  4. Array (data structure) - Wikipedia

    en.wikipedia.org/wiki/Array_(data_structure)

    Some array data structures do not reallocate storage, but do store a count of the number of elements of the array in use, called the count or size. This effectively makes the array a dynamic array with a fixed maximum size or capacity; Pascal strings are examples of this.

  5. Dynamic array - Wikipedia

    en.wikipedia.org/wiki/Dynamic_array

    Elements can be removed from the end of a dynamic array in constant time, as no resizing is required. The number of elements used by the dynamic array contents is its logical size or size, while the size of the underlying array is called the dynamic array's capacity or physical size, which is the maximum possible size without relocating data. [2]

  6. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator. If a is a row vector of size [1 n] and b is a corresponding column vector of size [n 1]. a * b; By contrast, the entrywise product is implemented as: a .* b;

  7. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.

  8. Sorting algorithm - Wikipedia

    en.wikipedia.org/wiki/Sorting_algorithm

    It works by creating an integer array of size |S| and using the ith bin to count the occurrences of the ith member of S in the input. Each input is then counted by incrementing the value of its corresponding bin. Afterward, the counting array is looped through to arrange all of the inputs in order.

  9. Variable-length array - Wikipedia

    en.wikipedia.org/wiki/Variable-length_array

    Growable arrays (also called dynamic arrays) are generally more useful than VLAs because dynamic arrays can do everything VLAs can do, and also support growing the array at run-time. For this reason, many programming languages ( JavaScript , Java , Python , R , etc.) only support growable arrays.