Search results
Results from the WOW.Com Content Network
Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
On a planar graph, both axes represent the mole fractions of the lighter (lower boiling) component; the horizontal (x) and vertical (y) axes represents the liquid and vapor phase compositions, respectively. The x = y line (see Figure 1) represents the scenarios where the compositions of liquid and vapor are the same.
Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...
The term scalar component refers sometimes to scalar projection, as, in Cartesian coordinates, the components of a vector are the scalar projections in the directions of the coordinate axes.
Because of this identification of vectors with covectors, one may speak of the covariant components or contravariant components of a vector, that is, they are just representations of the same vector using the reciprocal basis. Given a basis f = (X 1, ..., X n) of V, there is a unique reciprocal basis f # = (Y 1, ..., Y n) of V determined by ...
The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del.
This operation takes a vector X p at a point p and produces a covector g p (X p, −). In a basis of vector fields f, if a vector field X has components v[f], then the components of the covector field g(X, −) in the dual basis are given by the entries of the row vector