Search results
Results from the WOW.Com Content Network
Cumulative frequency distribution, adapted cumulative probability distribution, and confidence intervals. Cumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The phenomenon may be time- or space-dependent. Cumulative frequency is also called frequency of non-exceedance.
The cumulative frequency is the total of the absolute frequencies of all events at or below a certain point in an ordered list of events. [ 1 ] : 17–19 The relative frequency (or empirical probability ) of an event is the absolute frequency normalized by the total number of events:
cdf – cumulative distribution function. c.f. – cumulative frequency. c.c. – complex conjugate. char – characteristic of a ring. Chi – hyperbolic cosine integral function. Ci – cosine integral function. cis – cos + i sin function. (Also written as expi.) Cl – conjugacy class. cl – topological closure. CLT – central limit theorem.
where CF—the cumulative frequency—is the count of all scores less than or equal to the score of interest, F is the frequency for the score of interest, and N is the number of scores in the distribution. Alternatively, if CF ' is the count of all scores less than the score of interest, then
The aim of distribution fitting is to predict the probability or to forecast the frequency of occurrence of the magnitude of the phenomenon in a certain interval. There are many probability distributions (see list of probability distributions ) of which some can be fitted more closely to the observed frequency of the data than others, depending ...
CumFreq uses the plotting position approach to estimate the cumulative frequency of each of the observed magnitudes in a data series of the variable. [2] The computer program allows determination of the best fitting probability distribution. Alternatively it provides the user with the option to select the probability distribution to be fitted.
The points plotted as part of an ogive are the upper class limit and the corresponding cumulative absolute frequency [2] or cumulative relative frequency. The ogive for the normal distribution (on one side of the mean) resembles (one side of) an Arabesque or ogival arch, which is likely the origin of its name.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...