Search results
Results from the WOW.Com Content Network
Given two topological spaces X and Y, a homotopy equivalence between X and Y is a pair of continuous maps f : X → Y and g : Y → X, such that g ∘ f is homotopic to the identity map id X and f ∘ g is homotopic to id Y. If such a pair exists, then X and Y are said to be homotopy equivalent, or of the same homotopy type.
In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology , but nowadays is learned as an independent discipline.
The older definition of the homotopy category hTop, called the naive homotopy category [1] for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps f : X → Y are considered the same in the naive homotopy category if one can be continuously deformed to the other.
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group , denoted π 1 ( X ) , {\displaystyle \pi _{1}(X),} which records information about loops in a space .
An equivalent definition of homotopical connectivity is based on the homotopy groups of the space. A space is n-connected (or n-simple connected) if its first n homotopy groups are trivial. Homotopical connectivity is defined for maps, too. A map is n-connected if it is an isomorphism "up to dimension n, in homotopy".
A mapping : between total spaces of two fibrations : and : with the same base space is a fibration homomorphism if the following diagram commutes: . The mapping is a fiber homotopy equivalence if in addition a fibration homomorphism : exists, such that the mappings and are homotopic, by fibration homomorphisms, to the identities and . [2]: 405-406
It began by saying "The homotopy λ-calculus is a hypothetical (at the moment) type system" and ended with "At the moment much of what I said above is at the level of conjectures. Even the definition of the model of TS in the homotopy category is non-trivial" referring to the complex coherence issues that were not resolved until 2009.
The groups π n+k (S n) with n > k + 1 are called the stable homotopy groups of spheres, and are denoted π S k: they are finite abelian groups for k ≠ 0, and have been computed in numerous cases, although the general pattern is still elusive. [22] For n ≤ k+1, the groups are called the unstable homotopy groups of spheres. [citation needed]