Search results
Results from the WOW.Com Content Network
Almost all corn oil is expeller-pressed, then solvent-extracted using hexane or 2-methylpentane (isohexane). [1] The solvent is evaporated from the corn oil, recovered, and re-used. After extraction, the corn oil is then refined by degumming and/or alkali treatment, both of which remove phosphatides. Alkali treatment also neutralizes free fatty ...
However, the co-product from this process will produce corn oil, corn gluten meal, corn germ meal, corn gluten and feed steep water. The average of one bushel of corn generally will have about 32 lb of starch or 33 lb sweeteners or 2.5 gallons of fuel ethanol and 11.4 lb gluten feed and 3 lb gluten meal and 1.6 lb corn oil. [9] [10]
In 1995 the USDA released a report stating that the net energy balance of corn ethanol in the United States was an average of 1.24. It was previously considered to have a negative net energy balance. However, due to increases in corn crop yield and more efficient farming practices corn ethanol had gained energy efficiency. [3]
Compared to oil, with an 11:1 EROI, corn ethanol has a much lower EROI of 1.5:1, which, in turn, also provides less mileage per gallon compared to gasoline. [7] In the future, as technology advances and oil becomes less abundant, the process of milling may require less energy, resulting in an EROI closer to that of oil.
Steam injection is the most common form of TEOR, and it is often done with a cogeneration plant. This type of cogeneration plant uses a gas turbine to generate electricity, and the waste heat is used to produce steam, which is then injected into the reservoir. This form of recovery is used extensively to increase oil extraction in the San ...
Extraction in chemistry is a separation process consisting of the separation of a substance from a matrix. The distribution of a solute between two phases is an equilibrium condition described by partition theory.
A RAND study in 2005 estimated that production of 100,000 barrels per day (16,000 m 3 /d) of oil (5.4 million tons/year) would theoretically require a dedicated power generating capacity of 1.2 gigawatts (10 billion kWh/year), assuming deposit richness of 25 US gallons (95 L; 21 imp gal) per ton, with 100% pyrolysis efficiency, and 100% extraction of pyrolysis products. [1]
The extraction cell is filled with the solid sample to be examined and placed in a temperature-controllable oven. After adding the solvent, the cell is heated at constant pressure (adjustable between 0.3 and 20 MPa) up to a maximum temperature of 200°C and kept at constant conditions for a while so that equilibrium can be established.