Search results
Results from the WOW.Com Content Network
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition
In 2004, an analysis of the Bayesian classification problem showed that there are sound theoretical reasons for the apparently implausible efficacy of naive Bayes classifiers. [4] Still, a comprehensive comparison with other classification algorithms in 2006 showed that Bayes classification is outperformed by other approaches, such as boosted ...
This statistics -related article is a stub. You can help Wikipedia by expanding it.
The bayes classifier is the classifier which assigns classes optimally based on the known attributes (i.e. features or regressors) of the elements to be classified. A special kind of classification rule is binary classification, for problems in which there are only two classes.
Bayesian statistics (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a theory in the field of statistics based on the Bayesian interpretation of probability, where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous ...
Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.
A probabilistic neural network (PNN) [1] is a feedforward neural network, which is widely used in classification and pattern recognition problems.In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function.
A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). [1] While it is one of several forms of causal notation, causal networks are special cases of Bayesian ...