Search results
Results from the WOW.Com Content Network
The relational algebra uses set union, set difference, and Cartesian product from set theory, and adds additional constraints to these operators to create new ones.. For set union and set difference, the two relations involved must be union-compatible—that is, the two relations must have the same set of attributes.
In mathematics, a crossed product is a basic method of constructing a new von Neumann algebra from a von Neumann algebra acted on by a group. It is related to the semidirect product construction for groups. (Roughly speaking, crossed product is the expected structure for a group ring of a semidirect product group.
The cross product is anticommutative (that is, a × b = − b × a) and is distributive over addition, that is, a × (b + c) = a × b + a × c. [1] The space together with the cross product is an algebra over the real numbers, which is neither commutative nor associative, but is a Lie algebra with the cross product being the Lie bracket.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
A relation algebra (L, ∧, ∨, −, 0, 1, •, I, ˘) is an algebraic structure equipped with the Boolean operations of conjunction x∧y, disjunction x∨y, and negation x −, the Boolean constants 0 and 1, the relational operations of composition x•y and converse x˘, and the relational constant I, such that these operations and constants satisfy certain equations constituting an ...
Another form of composition of relations, which applies to general -place relations for , is the join operation of relational algebra. The usual composition of two binary relations as defined here can be obtained by taking their join, leading to a ternary relation, followed by a projection that removes the middle component.
In relational algebra, if and are relations, then the composite relation is defined so that if and only if there is a such that and . [ note 1 ] This definition is a generalisation of the definition of functional composition .
The map from the sum to the homology group of the product is called the cross product. More precisely, there is a cross product operation by which an i -cycle on X and a j -cycle on Y can be combined to create an ( i + j ) {\displaystyle (i+j)} -cycle on X × Y {\displaystyle X\times Y} ; so that there is an explicit linear mapping defined from ...