Search results
Results from the WOW.Com Content Network
Nitrogen is a fundamental nutrient in agriculture, playing a crucial role in plant growth and development. It is an essential component of proteins, enzymes, chlorophyll, and nucleic acids, all of which are essential for various metabolic processes within plants. [2]
Most of the nitrogen taken up by plants is from the soil in the forms of NO − 3, although in acid environments such as boreal forests where nitrification is less likely to occur, ammonium NH + 4 is more likely to be the dominating source of nitrogen. [49] Amino acids and proteins can only be built from NH + 4, so NO − 3 must be reduced.
Nitrogen is the most critical element obtained by plants from the soil, to the exception of moist tropical forests where phosphorus is the limiting soil nutrient, [36] and nitrogen deficiency often limits plant growth. [37] Plants can use nitrogen as either the ammonium cation (NH 4 +) or the anion nitrate (NO 3 −).
Nitrogen assimilation is the formation of organic nitrogen compounds like amino acids from inorganic nitrogen compounds present in the environment. Organisms like plants , fungi and certain bacteria that can fix nitrogen gas (N 2 ) depend on the ability to assimilate nitrate or ammonia for their needs.
Plants synthesize certain compounds called secondary metabolites which are not naturally produced by humans but can play vital roles in protection or destruction of human health. One such group of metabolites is phytoestrogens , found in nuts, oilseeds, soy, and other foods. [ 17 ]
The need for nitrogen is addressed by requirements set for protein, which is composed of nitrogen-containing amino acids. Sulfur is essential, but again does not have a recommended intake. Instead, recommended intakes are identified for the sulfur-containing amino acids methionine and cysteine .
They contain symbiotic bacteria called rhizobia within the nodules, producing nitrogen compounds that help the plant to grow and compete with other plants. When the plant dies, the fixed nitrogen is released, making it available to other plants, and this helps to fertilize the soil.
Nitrogen fixation is a chemical process by which molecular dinitrogen (N 2) is converted into ammonia (NH 3). [1] It occurs both biologically and abiologically in chemical industries. Biological nitrogen fixation or diazotrophy is catalyzed by enzymes called nitrogenases. [2]