Search results
Results from the WOW.Com Content Network
The open-circuit test, or no-load test, is one of the methods used in electrical engineering to determine the no-load impedance in the excitation branch of a transformer. The no load is represented by the open circuit, which is represented on the right side of the figure as the "hole" or incomplete part of the circuit.
A different form of short-circuit testing is done to assess the mechanical strength of the transformer windings, and their ability to withstand the high forces produced if an energized transformer experiences a short-circuit fault. Currents during such events can be several times the normal rated current.
Select capacitor C 1, replace it by a test voltage V X, and replace C 2 by an open circuit. Then the resistance seen by the test voltage is found using the circuit in the right panel of Figure 1 and is simply V X / I X = R 1. Form the product C 1 R 1. Add these terms. In effect, it is as though each capacitor charges and discharges through the ...
It is also known as short-circuit test (because it is the mechanical analogy of a transformer short-circuit test), [1] locked rotor test or stalled torque test. [2] From this test, short-circuit current at normal voltage , power factor on short circuit, total leakage reactance , and starting torque of the motor can be found.
Setting a capacitor value to zero corresponds to an open circuit, while a zero-valued inductor is a short circuit. So for calculation of the , all other capacitors are open-circuited and all other inductors are short-circuited. This is the essence of the ZVT method, which reduces to OCT when only capacitors are involved.
The maximum load is the one that draws the greatest current, i.e. the lowest specified load resistance (never short circuit); is the voltage at minimum load. The minimum load is the one that draws the least current, i.e. the highest specified load resistance (possibly open circuit for some types of linear supplies, usually limited by pass ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The open-circuit saturation curve (also open-circuit characteristic, OCC) of a synchronous generator is a plot of the output open circuit voltage as a function of the excitation current or field. The curve is typically plotted alongside the synchronous impedance curve .