enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  3. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  4. Data classification (data management) - Wikipedia

    en.wikipedia.org/wiki/Data_classification_(data...

    Data classification is the process of organizing data into categories based on attributes like file type, content, or metadata. The data is then assigned class labels that describe a set of attributes for the corresponding data sets. The goal is to provide meaningful class attributes to former less structured information.

  5. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    Decision tree learning is a powerful classification technique. The tree tries to infer a split of the training data based on the values of the available features to produce a good generalization. The algorithm can naturally handle binary or multiclass classification problems. The leaf nodes can refer to any of the K classes concerned.

  6. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Statlog (German Credit Data) Binary credit classification into "good" or "bad" with many features Various financial features of each person are given. 690 Text Classification 1994 [416] H. Hofmann Bank Marketing Dataset Data from a large marketing campaign carried out by a large bank . Many attributes of the clients contacted are given.

  7. Associative classifier - Wikipedia

    en.wikipedia.org/wiki/Associative_classifier

    An associative classifier (AC) is a kind of supervised learning model that uses association rules to assign a target value. The term associative classification was coined by Bing Liu et al., [1] in which the authors defined a model made of rules "whose right-hand side are restricted to the classification class attribute".

  8. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    Therefore, the greater the entropy at a node, the less information is known about the classification of data at this stage of the tree; and therefore, the greater the potential to improve the classification here. As such, ID3 is a greedy heuristic performing a best-first search for locally optimal entropy values. Its accuracy can be improved by ...

  9. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    An algorithm that implements classification, especially in a concrete implementation, is known as a classifier. The term "classifier" sometimes also refers to the mathematical function, implemented by a classification algorithm, that maps input data to a category. Terminology across fields is quite varied.