enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  3. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  4. Category:Classification algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Classification...

    Margin-infused relaxed algorithm; Mathematics of artificial neural networks; Multi-label classification; Multiclass classification; Multifactor dimensionality reduction; Multilayer perceptron; Multinomial logistic regression; Multiple discriminant analysis; Multispectral pattern recognition

  5. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    An algorithm that implements classification, especially in a concrete implementation, is known as a classifier. The term "classifier" sometimes also refers to the mathematical function, implemented by a classification algorithm, that maps input data to a category. Terminology across fields is quite varied.

  6. Category:Data mining algorithms - Wikipedia

    en.wikipedia.org/.../Category:Data_mining_algorithms

    Classification algorithms (3 C, 85 P) Cluster analysis algorithms (42 P) Pages in category "Data mining algorithms" The following 6 pages are in this category, out of ...

  7. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    Before data mining algorithms can be used, a target data set must be assembled. As data mining can only uncover patterns actually present in the data, the target data set must be large enough to contain these patterns while remaining concise enough to be mined within an acceptable time limit. A common source for data is a data mart or data ...

  8. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    Condensed nearest neighbor (CNN, the Hart algorithm) is an algorithm designed to reduce the data set for k-NN classification. [22] It selects the set of prototypes U from the training data, such that 1NN with U can classify the examples almost as accurately as 1NN does with the whole data set.

  9. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    Therefore, the greater the entropy at a node, the less information is known about the classification of data at this stage of the tree; and therefore, the greater the potential to improve the classification here. As such, ID3 is a greedy heuristic performing a best-first search for locally optimal entropy values. Its accuracy can be improved by ...