Search results
Results from the WOW.Com Content Network
This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.
In a nucleic acid double helix, the direction of the nucleotides in one strand is opposite to their direction in the other strand: the strands are antiparallel. The asymmetric ends of DNA strands are said to have a directionality of five prime end (5′ ), and three prime end (3′), with the 5′ end having a terminal phosphate group and the 3 ...
Nucleic acids are formed when nucleotides come together through phosphodiester linkages between the 5' and 3' carbon atoms. [3] A nucleic acid sequence is the order of nucleotides within a DNA (GACT) or RNA (GACU) molecule that is determined by a series of letters. Sequences are presented from the 5' to 3' end and determine the covalent ...
DNA consists of two long polymers of monomer units called nucleotides, with backbones made of sugars and phosphate groups joined by ester bonds. These two strands are oriented in opposite directions to each other and are, therefore, antiparallel. Attached to each sugar is one of four types of molecules called nucleobases (informally, bases).
A nucleic acid sequence is a succession of bases within the nucleotides forming alleles within a DNA (using GACT) or RNA (GACU) molecule. This succession is denoted by a series of a set of five different letters that indicate the order of the nucleotides. By convention, sequences are usually presented from the 5' end to the 3' end.
Each unit is joined when a covalent bond forms between its phosphate group and the pentose sugar of the next nucleotide, forming a sugar-phosphate backbone. DNA is a complementary, double stranded structure as specific base pairing (adenine and thymine, guanine and cytosine) occurs naturally when hydrogen bonds form between the nucleotide bases.
Nucleotides are heterocyclic compounds, that is, they contain at least two different chemical elements as members of its rings. [citation needed] Both RNA and DNA contain two major purine bases, adenine (A) and guanine (G), and two major pyrimidines. In both DNA and RNA, one of the pyrimidines is cytosine (C).
The DNA double helix biopolymer of nucleic acid is held together by nucleotides which base pair together. [3] In B-DNA, the most common double helical structure found in nature, the double helix is right-handed with about 10–10.5 base pairs per turn. [4] The double helix structure of DNA contains a major groove and minor groove.