enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The tangent line through a point P on the circle is perpendicular to the diameter passing through P. If P = (x 1, y 1) and the circle has centre (a, b) and radius r, then the tangent line is perpendicular to the line from (a, b) to (x 1, y 1), so it has the form (x 1 − a)x + (y 1 – b)y = c.

  3. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    In geometry, the area enclosed by a circle of radius r is πr 2.Here, the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

  4. Diameter - Wikipedia

    en.wikipedia.org/wiki/Diameter

    The diameter of a circle is exactly twice its radius. However, this is true only for a circle, and only in the Euclidean metric. Jung's theorem provides more general inequalities relating the diameter to the radius.

  5. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter ) ( D {\displaystyle D} ) is twice the equivalent radius.

  6. Circumference - Wikipedia

    en.wikipedia.org/wiki/Circumference

    When a circle's diameter is 1, its circumference is . When a circle's radius is 1—called a unit circle —its circumference is 2 π . {\displaystyle 2\pi .} Relationship with π

  7. Great circle - Wikipedia

    en.wikipedia.org/wiki/Great_circle

    Any diameter of any great circle coincides with a diameter of the sphere, and therefore every great circle is concentric with the sphere and shares the same radius. Any other circle of the sphere is called a small circle, and is the intersection of the sphere with a plane not passing through its center. Small circles are the spherical-geometry ...

  8. Measurement of a Circle - Wikipedia

    en.wikipedia.org/wiki/Measurement_of_a_Circle

    A page from Archimedes' Measurement of a Circle. Measurement of a Circle or Dimension of the Circle (Greek: Κύκλου μέτρησις, Kuklou metrēsis) [1] is a treatise that consists of three propositions, probably made by Archimedes, ca. 250 BCE. [2] [3] The treatise is only a fraction of what was a longer work. [4] [5]

  9. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that