Search results
Results from the WOW.Com Content Network
The direction of such a magnetic field can be determined by using the "right-hand grip rule" (see figure at right). The strength of the magnetic field decreases with distance from the wire. (For an infinite length wire the strength is inversely proportional to the distance.) A Solenoid with electric current running through it behaves like a magnet.
direction: unitless impact parameter meter (m) differential (e.g. ) varied depending on context differential vector element of surface area A, with infinitesimally small magnitude and direction normal to surface S: square meter (m 2) differential element of volume V enclosed by surface S
Measure of the extent and direction an object rotates about a reference point kg⋅m 2 /s L 2 M T −1: conserved, bivector Angular velocity: ω: The angle incremented in a plane by a segment connecting an object and a reference point per unit time rad/s T −1: bivector Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar ...
Common symbols. E: SI unit ... the field at that point would be only one-quarter its original strength. ... is the unit vector in the direction from point to ...
Hazard symbols; List of mathematical constants (typically letters and compound symbols) Glossary of mathematical symbols; List of physical constants (typically letters and compound symbols) List of common physics notations (typically letters used as variable names in equations) Rod of Asclepius / Caduceus as a symbol of medicine
In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.
An early arrow symbol is found in an illustration of Bernard Forest de Bélidor's treatise L'architecture hydraulique, printed in France in 1737. The arrow is here used to illustrate the direction of the flow of water and of the water wheel's rotation. At about the same time, arrow symbols were used to indicate the flow of rivers in maps. [3]
The strength (and direction) of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet (i.e., inside the magnet). The magnetic moment also expresses the magnetic force effect of a magnet.