enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Non-inertial reference frame - Wikipedia

    en.wikipedia.org/wiki/Non-inertial_reference_frame

    A non-inertial reference frame (also known as an accelerated reference frame [1]) is a frame of reference that undergoes acceleration with respect to an inertial frame. [2] An accelerometer at rest in a non-inertial frame will, in general, detect a non-zero acceleration. While the laws of motion are the same in all inertial frames, in non ...

  3. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    All frames of reference with zero acceleration are in a state of constant rectilinear motion (straight-line motion) with respect to one another. In such a frame, an object with zero net force acting on it, is perceived to move with a constant velocity, or, equivalently, Newton's first law of motion holds. Such frames are known as inertial.

  4. Proper acceleration - Wikipedia

    en.wikipedia.org/wiki/Proper_acceleration

    In relativity theory, proper acceleration [1] is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall , or inertial , observer who is momentarily at rest relative to the object being measured.

  5. Accelerometer - Wikipedia

    en.wikipedia.org/wiki/Accelerometer

    An accelerometer measures proper acceleration, which is the acceleration it experiences relative to freefall and is the acceleration felt by people and objects. [2] Put another way, at any point in spacetime the equivalence principle guarantees the existence of a local inertial frame, and an accelerometer measures the acceleration relative to that frame. [4]

  6. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Deceleration ramp down — positive jerk limit; linear increase in acceleration to zero; quadratic decrease in velocity; approaching the desired position at zero speed and zero acceleration Segment four's time period (constant velocity) varies with distance between the two positions.

  7. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    However, such calculations are demanding because the equations must generally be solved in a four-dimensional space. Nevertheless, beginning in the late 1990s, it became possible to solve difficult problems such as the merger of two black holes, which is a very difficult version of the Kepler problem in general relativity.

  8. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  9. Rindler coordinates - Wikipedia

    en.wikipedia.org/wiki/Rindler_coordinates

    Since it is getting shorter, the back end must accelerate harder than the front. Another way to look at it is: the back end must achieve the same change in velocity in a shorter period of time. This leads to a differential equation showing that, at some distance, the acceleration of the trailing end diverges, resulting in the Rindler horizon.