enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Theorem — The number of strictly positive roots (counting multiplicity) of is equal to the number of sign changes in the coefficients of , minus a nonnegative even number. If b 0 > 0 {\displaystyle b_{0}>0} , then we can divide the polynomial by x b 0 {\displaystyle x^{b_{0}}} , which would not change its number of strictly positive roots.

  3. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    It follows from the present theorem and the fundamental theorem of algebra that if the degree of a real polynomial is odd, it must have at least one real root. [2] This can be proved as follows. Since non-real complex roots come in conjugate pairs, there are an even number of them; But a polynomial of odd degree has an odd number of roots;

  4. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    The integral root theorem is the special case of the rational root theorem when the ... It gives a finite number of possible fractions which can be checked to see if ...

  5. Budan's theorem - Wikipedia

    en.wikipedia.org/wiki/Budan's_theorem

    In mathematics, Budan's theorem is a theorem for bounding the number of real roots of a polynomial in an interval, and computing the parity of this number. It was published in 1807 by François Budan de Boislaurent. A similar theorem was published independently by Joseph Fourier in 1820. Each of these theorems is a corollary of the other.

  6. Sturm's theorem - Wikipedia

    en.wikipedia.org/wiki/Sturm's_theorem

    Sturm's theorem expresses the number of distinct real roots of p located in an interval in terms of the number of changes of signs of the values of the Sturm sequence at the bounds of the interval. Applied to the interval of all the real numbers, it gives the total number of real roots of p .

  7. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros.

  8. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    By Rouché's theorem, this implies directly that () and have the same number of roots of absolute values less than R, counted with multiplicities. As this number is k , the result is proved. The above result may be applied if the polynomial

  9. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    Fundamental theorem of algebra – Every polynomial has a real or complex root; Hurwitz's theorem (complex analysis) – Limit of roots of sequence of functions; Rational root theorem – Relationship between the rational roots of a polynomial and its extreme coefficients