Search results
Results from the WOW.Com Content Network
The concentration of the species LH is equal to the sum of the concentrations of the two micro-species with the same chemical formula, labelled L 1 H and L 2 H. The constant K 2 is for a reaction with these two micro-species as products, so that [LH] = [L 1 H] + [L 2 H] appears in the numerator, and it follows that this macro-constant is equal ...
The chemical model consists of a set of chemical species present in solution, both the reactants added to the reaction mixture and the complex species formed from them. Denoting the reactants by A, B..., each complex species is specified by the stoichiometric coefficients that relate the particular combination of reactants forming them.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
For example, if the reaction equation had 2 H + ions in the product, then the "change" for that cell would be "2x" The fourth row, labeled E, is the sum of the first two rows and shows the final concentrations of each species at equilibrium. It can be seen from the table that, at equilibrium, [H +] = x.
For example, if equilibrium is specified by a single chemical equation:, [24] ∑ j = 0 m ν j R j = 0 {\displaystyle \sum _{j=0}^{m}\nu _{j}R_{j}=0} where ν j is the stoichiometric coefficient for the j th molecule (negative for reactants, positive for products) and R j is the symbol for the j th molecule, a properly balanced equation will obey:
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
Once chemical activity is factored into the correct form of the equation, a dimensionless value is obtained. For the binding of receptor and ligand molecules in solution, the molar Gibbs free energy Δ G , or the binding affinity is related to the dissociation constant K d via
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...