Search results
Results from the WOW.Com Content Network
Use of recursion in an algorithm has both advantages and disadvantages. The main advantage is usually the simplicity of instructions. The main disadvantage is that the memory usage of recursive algorithms may grow very quickly, rendering them impractical for larger instances.
Recursive drawing of a SierpiĆski Triangle through turtle graphics. In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. [1] [2] Recursion solves such recursive problems by using functions that call themselves from within their own code ...
However, in functional programming languages, tail-call elimination is often guaranteed by the language standard, allowing tail recursion to use a similar amount of memory as an equivalent loop. The special case of tail-recursive calls, when a function calls itself, may be more amenable to call elimination than general tail calls.
This strategy avoids the overhead of recursive calls that do little or no work and may also allow the use of specialized non-recursive algorithms that, for those base cases, are more efficient than explicit recursion. A general procedure for a simple hybrid recursive algorithm is short-circuiting the base case, also known as arm's-length ...
In type-based program analysis polymorphic recursion is often essential in gaining high precision of the analysis. Notable examples of systems employing polymorphic recursion include Dussart, Henglein and Mossin's binding-time analysis [2] and the Tofte–Talpin region-based memory management system. [3]
Memory-bound functions and memory functions are related in that both involve extensive memory access, but a distinction exists between the two.. Memory functions use a dynamic programming technique called memoization in order to relieve the inefficiency of recursion that might occur.
One can use a diagonalization argument to show that f is not recursive primitive in itself: had it been such, so would be h(n) = f(n,n)+1. But if this equals some primitive recursive function, there is an m such that h ( n ) = f ( m , n ) for all n , and then h ( m ) = f ( m , m ), leading to contradiction.
The μ-recursive functions (or general recursive functions) are partial functions that take finite tuples of natural numbers and return a single natural number. They are the smallest class of partial functions that includes the initial functions and is closed under composition, primitive recursion, and the minimization operator μ .