Search results
Results from the WOW.Com Content Network
Set sizes range from 8 to 30-kW (also 8 to 30-kVA single phase) for homes, small shops, and offices, with the larger industrial generators from 8-kW (11 kVA) up to 2,000-kW (2,500-kVA three phase) used for office complexes, factories, and other industrial facilities. A 2,000-kW set can be housed in a 40 ft (12 m) ISO container with a fuel tank ...
Industrial water heaters may reach 2000 kilowatts. Where off-peak electric power rates are available, hot water may be stored to use when required. Electric shower and tankless heaters also use an immersion heater (shielded or naked) that is turned on with the flow of water. A group of separate heaters can be switched to offer different heating ...
An ideal electrolysis unit operating at a temperature of 25 °C having liquid water as the input and gaseous hydrogen and gaseous oxygen as products would require a theoretical minimum input of electrical energy of 237.129 kJ (0.06587 kWh) per gram mol (18.0154 gram) of water consumed and would require 48.701 kJ (0.01353 kWh) per gram mol of ...
Example: For a heat pump delivering 120,000,000 BTU during the season, when consuming 15,000 kWh, the HSPF can be calculated as : HSPF = 120000000 (BTU) / (1000) / 15000 (kWh) HSPF = 8. The HSPF is related to the non-dimensional Coefficient of Performance (COP) for a heat pump, which measures the ratio of heat delivered to work done by the ...
Power-to-weight ratio (PWR, also called specific power, or power-to-mass ratio) is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement of actual performance of any engine or power source.
So, for a boiler that produces 210 kW (or 700,000 BTU/h) output for each 300 kW (or 1,000,000 BTU/h) heat-equivalent input, its thermal efficiency is 210/300 = 0.70, or 70%. This means that 30% of the energy is lost to the environment. An electric resistance heater has a thermal efficiency close to 100%. [8]
The energy factor metric only applies to residential water heaters, which are currently defined by fuel, type, and input capacity. [5] Generally, the EF number represents the thermal efficiency of the water heater as a percentage, since it is an average of the ratio of the theoretical heat required to raise the temperature of water drawn to the amount of energy actually consumed by the water ...
A heat rate value of 2 kWh/kWh gives an efficiency factor of 50%. A heat rate value of 4 MJ/MJ gives an efficiency factor of 25%. For other units, make sure to use a corresponding conversion factor for the units. For example, if using Btu/kWh, use a conversion factor of 3,412 Btu per kWh to calculate the efficiency factor.