Search results
Results from the WOW.Com Content Network
Piezoelectric balance presented by Pierre Curie to Lord Kelvin, Hunterian Museum, Glasgow. Piezoelectricity (/ ˌ p iː z oʊ-, ˌ p iː t s oʊ-, p aɪ ˌ iː z oʊ-/, US: / p i ˌ eɪ z oʊ-, p i ˌ eɪ t s oʊ-/) [1] is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in ...
Nearly all single crystal systems are anisotropic with respect to mechanical properties, with Tungsten being a very notable exception, as it is a cubic metal with stiffness tensor coefficients that exist in the proper ratio to allow for mechanical isotropy. In general, however, cubic crystals are not mechanically isotropic.
Tensor descriptions of material properties can be used to determine the directional dependence of that property. For a monocrystalline material, anisotropy is associated with the crystal symmetry in the sense that more symmetric crystal types have fewer independent coefficients in the tensor description of a given property.
The Zener ratio is a dimensionless number that is used to quantify the anisotropy for cubic crystals. It is sometimes referred as anisotropy ratio and is named after Clarence Zener. [1] Conceptually, it quantifies how far a material is from being isotropic (where the value of 1 means an isotropic material). Its mathematical definition is [1] [2]
Crystal chemistry is the study of the principles of chemistry behind crystals and their use in describing structure-property relations in solids, as well as the chemical properties of periodic structures. [1]
The scientific definition of a "crystal" is based on the microscopic arrangement of atoms inside it, called the crystal structure. A crystal is a solid where the atoms form a periodic arrangement. (Quasicrystals are an exception, see below). Not all solids are crystals.
In physics, tensor is an orientational order parameter that describes uniaxial and biaxial nematic liquid crystals and vanishes in the isotropic liquid phase. [1] The Q {\displaystyle \mathbf {Q} } tensor is a second-order, traceless, symmetric tensor and is defined by [ 2 ] [ 3 ] [ 4 ]
Thermal ellipsoids can be defined by a tensor, a mathematical object which allows the definition of magnitude and orientation of vibration with respect to three mutually perpendicular axes. The three principal axes of the thermal vibration of an atom are denoted U 1 {\displaystyle U_{1}} , U 2 {\displaystyle U_{2}} , and U 3 {\displaystyle U_{3 ...