Search results
Results from the WOW.Com Content Network
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
R M = return on the market portfolio σ M = standard deviation of the market portfolio σ P = standard deviation of portfolio (R M – I RF)/σ M is the slope of CML. (R M – I RF) is a measure of the risk premium, or the reward for holding risky portfolio instead of risk-free portfolio. σ M is the risk of the market portfolio. Therefore, the ...
The MPT is a mean-variance theory, and it compares the expected (mean) return of a portfolio with the standard deviation of the same portfolio. The image shows expected return on the vertical axis, and the standard deviation on the horizontal axis (volatility). Volatility is described by standard deviation and it serves as a measure of risk. [7]
Summary statistics can be derived from a set of deviations, such as the standard deviation and the mean absolute deviation, measures of dispersion, and the mean signed deviation, a measure of bias. [1] The deviation of each data point is calculated by subtracting the mean of the data set from the individual data point.
In both cases, the empirical standard deviation before failure gives no real indication of the size of the risk being run. [4] Even in less extreme cases, a reliable empirical estimate of Sharpe ratio still requires the collection of return data over sufficient period for all aspects of the strategy returns to be observed.
For an approximately normal data set, the values within one standard deviation of the mean account for about 68% of the set; while within two standard deviations account for about 95%; and within three standard deviations account for about 99.7%. Shown percentages are rounded theoretical probabilities intended only to approximate the empirical ...
Merton's portfolio problem is a problem in continuous-time finance and in particular intertemporal portfolio choice. An investor must choose how much to consume and must allocate their wealth between stocks and a risk-free asset so as to maximize expected utility .
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.