Search results
Results from the WOW.Com Content Network
In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B. The relationship of one set being a subset of another is called inclusion (or sometimes containment).
In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces .
In mathematics, for a function : ... satisfying the equation + =, that is, the origin-centered ... With respect to the algebra of subsets described above, ...
In linear algebra, the closure of a non-empty subset of a vector space (under vector-space operations, that is, addition and scalar multiplication) is the linear span of this subset. It is a vector space by the preceding general result, and it can be proved easily that is the set of linear combinations of elements of the subset.
The Supplemental Mathematical Operators block (U+2A00–U+2AFF) contains various mathematical symbols, including N-ary operators, summations and integrals, intersections and unions, logical and relational operators, and subset/superset relations.
In mathematics, the infimum (abbreviated inf; pl.: infima) of a subset of a partially ordered set is the greatest element in that is less than or equal to each element of , if such an element exists. [1]
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The expressions "A includes x" and "A contains x" are also used to mean set membership, although some authors use them to mean instead "x is a subset of A". [2] Logician George Boolos strongly urged that "contains" be used for membership only, and "includes" for the subset relation only. [3] For the relation ∈ , the converse relation ∈ T ...