enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Real gas - Wikipedia

    en.wikipedia.org/wiki/Real_gas

    Critical isotherm for Redlich-Kwong model in comparison to van-der-Waals model and ideal gas (with V 0 =RT c /p c) The Redlich–Kwong equation is another two-parameter equation that is used to model real gases. It is almost always more accurate than the van der Waals equation, and often more accurate than some equations with more than two ...

  3. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    One way to write the van der Waals equation is: [8] [9] [10] = where is pressure, is temperature, and = / is molar volume. In addition is the Avogadro constant, is the volume, and is the number of molecules (the ratio / is a physical quantity with base unit mole (symbol mol) in the SI).

  4. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  5. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    The ideal gas law is the equation of state for an ideal gas, given by: = where P is the pressure; V is the volume; n is the amount of substance of the gas (in moles) T is the absolute temperature; R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature.

  6. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Equation of state; Ideal gas; Real gas; State of matter; Phase (matter) ... Chemical potential ... Formula Natural variables ...

  7. Fugacity - Wikipedia

    en.wikipedia.org/wiki/Fugacity

    For an ideal gas, fugacity and pressure are equal, and so φ = 1. Taken at the same temperature and pressure, the difference between the molar Gibbs free energies of a real gas and the corresponding ideal gas is equal to RT ln φ. The fugacity is closely related to the thermodynamic activity. For a gas, the activity is simply the fugacity ...

  8. Gas laws - Wikipedia

    en.wikipedia.org/wiki/Gas_laws

    The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.

  9. Boyle temperature - Wikipedia

    en.wikipedia.org/wiki/Boyle_temperature

    This is the virial equation of state and describes a real gas. Since higher order virial coefficients are generally much smaller than the second coefficient, the gas tends to behave as an ideal gas over a wider range of pressures when the temperature reaches the Boyle temperature (or when c = 1 V m {\textstyle c={\frac {1}{V_{m}}}} or P ...