Search results
Results from the WOW.Com Content Network
One context in which symmetric polynomial functions occur is in the study of monic univariate polynomials of degree n having n roots in a given field.These n roots determine the polynomial, and when they are considered as independent variables, the coefficients of the polynomial are symmetric polynomial functions of the roots.
The following lists the power sum symmetric polynomials of positive degrees up to n for the first three positive values of . In every case, = is one of the polynomials. The list goes up to degree n because the power sum symmetric polynomials of degrees 1 to n are basic in the sense of the theorem stated below.
The Newton identities also permit expressing the elementary symmetric polynomials in terms of the power sum symmetric polynomials, showing that any symmetric polynomial can also be expressed in the power sums. In fact the first n power sums also form an algebraic basis for the space of symmetric polynomials.
Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric -tensors on a vector space is isomorphic to the space of homogeneous polynomials of degree on . Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry.
In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary symmetric polynomials.
Notice that the a-mean as defined above only has the usual properties of a mean (e.g., if the mean of equal numbers is equal to them) if + + =. In the general case, one can consider instead [] / (+ +), which is called a Muirhead mean. [1] Examples
In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in ( Mercer 1909 ), is one of the most notable results of the work of James Mercer (1883–1932).
The symmetric tensors of degree n form a vector subspace (or module) Sym n (V) ⊂ T n (V). The symmetric tensors are the elements of the direct sum = (), which is a graded vector space (or a graded module). It is not an algebra, as the tensor product of two symmetric tensors is not symmetric in general.