enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nonstandard calculus - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_calculus

    Let f be a continuous function on [a,b] such that f(a)<0 while f(b)>0. Then there exists a point c in [a,b] such that f(c)=0. The proof proceeds as follows. Let N be an infinite hyperinteger. Consider a partition of [a,b] into N intervals of equal length, with partition points x i as i runs from 0 to N.

  3. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    In other words, since the two one-sided limits exist and are equal, the limit of () as approaches exists and is equal to this same value. If the actual value of f ( x 0 ) {\displaystyle f\left(x_{0}\right)} is not equal to L , {\displaystyle L,} then x 0 {\displaystyle x_{0}} is called a removable discontinuity .

  4. Cesàro summation - Wikipedia

    en.wikipedia.org/wiki/Cesàro_summation

    exists and is finite (Titchmarsh 1948, §1.15). The value of this limit, should it exist, is the (C, α) sum of the integral. Analogously to the case of the sum of a series, if α = 0, the result is convergence of the improper integral. In the case α = 1, (C, 1) convergence is equivalent to the existence of the limit

  5. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    respectively. If these limits exist at p and are equal there, then this can be referred to as the limit of f(x) at p. [7] If the one-sided limits exist at p, but are unequal, then there is no limit at p (i.e., the limit at p does not exist). If either one-sided limit does not exist at p, then the limit at p also does not exist.

  6. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    Limits can be difficult to compute. There exist limit expressions whose modulus of convergence is undecidable. In recursion theory, the limit lemma proves that it is possible to encode undecidable problems using limits. [14] There are several theorems or tests that indicate whether the limit exists. These are known as convergence tests.

  7. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    [1] [2] This applies even in the cases that f(x) and g(x) take on different values at c, or are discontinuous at c. Polynomials and functions of the form x a [ edit ]

  8. Limit (category theory) - Wikipedia

    en.wikipedia.org/wiki/Limit_(category_theory)

    create limits for F if whenever (L, φ) is a limit of GF there exists a unique cone (L′, φ′) to F such that G(L′, φ′) = (L, φ), and furthermore, this cone is a limit of F. reflect limits for F if each cone to F whose image under G is a limit of GF is already a limit of F. Dually, one can define creation and reflection of colimits.

  9. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    where denotes the limit superior (possibly ; if the limit exists it is the same value). If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge.