enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  3. Ridders' method - Wikipedia

    en.wikipedia.org/wiki/Ridders'_method

    In numerical analysis, Ridders' method is a root-finding algorithm based on the false position method and the use of an exponential function to successively approximate a root of a continuous function (). The method is due to C. Ridders. [1] [2]

  4. Sidi's generalized secant method - Wikipedia

    en.wikipedia.org/wiki/Sidi's_generalized_secant...

    Sidi's generalized secant method is a root-finding algorithm, that is, a numerical method for solving equations of the form () =.The method was published by Avram Sidi. [1]The method is a generalization of the secant method.

  5. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial , then Laguerre's method converges cubically whenever the initial guess, , is close enough to the root . On the other hand, when x 1 {\displaystyle \ x_{1}\ } is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...

  6. Halley's method - Wikipedia

    en.wikipedia.org/wiki/Halley's_method

    In numerical analysis, Halley's method is a root-finding algorithm used for functions of one real variable with a continuous second derivative. Edmond Halley was an English mathematician and astronomer who introduced the method now called by his name. The algorithm is second in the class of Householder's methods, after Newton's method.

  7. Category:Root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Root-finding...

    A root-finding algorithm is a numerical method or algorithm for finding a value x such that f(x) = 0, for a given function f. Here, x is a single real number. Root-finding algorithms are studied in numerical analysis.

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  9. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    In numerical analysis, Brent's method is a hybrid root-finding algorithm combining the bisection method, the secant method and inverse quadratic interpolation.It has the reliability of bisection but it can be as quick as some of the less-reliable methods.