Search results
Results from the WOW.Com Content Network
The finite sets that belong to Δ are called faces of the complex, and a face Y is said to belong to another face X if Y ⊆ X, so the definition of an abstract simplicial complex can be restated as saying that every face of a face of a complex Δ is itself a face of Δ. The vertex set of Δ is defined as V(Δ) = ∪Δ, the union of all faces ...
A simplicial 3-complex. In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts (see illustration). ). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy th
Constructing the Čech complex of a set of points sampled from a circle. In algebraic topology and topological data analysis, the Čech complex is an abstract simplicial complex constructed from a point cloud in any metric space which is meant to capture topological information about the point cloud or the distribution it is drawn from.
The clique complex X(G) of an undirected graph G is an abstract simplicial complex (that is, a family of finite sets closed under the operation of taking subsets), formed by the sets of vertices in the cliques of G.
Simplicial homology is defined by a simple recipe for any abstract simplicial complex. It is a remarkable fact that simplicial homology only depends on the associated topological space. [2]: sec.8.6 As a result, it gives a computable way to distinguish one space from another.
Let K be an abstract simplicial complex (ASC). The face poset of K is a poset made of all nonempty simplices of K , ordered by inclusion (which is a partial order). For example, the face-poset of the closure of {A,B,C} is the poset with the following chains:
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An abstract simplicial complex Δ is called Cohen–Macaulay over k if its face ring is a Cohen–Macaulay ring. [3] In his 1974 thesis, Gerald Reisner gave a complete characterization of such complexes.