Search results
Results from the WOW.Com Content Network
One-dimensional abstract simplicial complexes are mathematically equivalent to simple undirected graphs: the vertex set of the complex can be viewed as the vertex set of a graph, and the two-element facets of the complex correspond to undirected edges of a graph. In this view, one-element facets of a complex correspond to isolated vertices that ...
An abstract simplicial complex (ASC) is family of sets that is closed under taking subsets (the subset of a set in the family is also a set in the family). Every abstract simplicial complex has a unique geometric realization in a Euclidean space as a geometric simplicial complex (GSC), where each set with k elements in the ASC is mapped to a (k-1)-dimensional simplex in the GSC.
A simplicial 3-complex. In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts (see illustration). ). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy th
Consequently, its homology can be studied by combinatorial and geometric methods. An abstract simplicial complex Δ is called Cohen–Macaulay over k if its face ring is a Cohen–Macaulay ring. [3] In his 1974 thesis, Gerald Reisner gave a complete characterization of such complexes.
In algebraic combinatorics, the Kruskal–Katona theorem gives a complete characterization of the f-vectors of abstract simplicial complexes.It includes as a special case the ErdÅ‘s–Ko–Rado theorem and can be restated in terms of uniform hypergraphs.
The dimension of an abstract simplicial complex is defined as () = {():}. [ 1 ] Abstract simplicial complexes can be realized as geometrical objects by associating each abstract simplex with a geometric simplex, defined below.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Simplicial homology is defined by a simple recipe for any abstract simplicial complex. It is a remarkable fact that simplicial homology only depends on the associated topological space. [2]: sec.8.6 As a result, it gives a computable way to distinguish one space from another.