Search results
Results from the WOW.Com Content Network
Relative humidity is an important metric used in weather forecasts and reports, as it is an indicator of the likelihood of precipitation, dew, or fog. In hot summer weather, a rise in relative humidity increases the apparent temperature to humans (and other animals) by hindering the evaporation of perspiration from the skin.
The formula below approximates the heat index in degrees Fahrenheit, to within ±1.3 °F (0.7 °C). It is the result of a multivariate fit (temperature equal to or greater than 80 °F (27 °C) and relative humidity equal to or greater than 40%) to a model of the human body.
The LCL can be either computed or determined graphically using standard thermodynamic diagrams such as the skew-T log-P diagram or the tephigram.Nearly all of these formulations make use of the relationship between the LCL and the dew point, which is the temperature to which an air parcel needs to be cooled isobarically until its RH just reaches 100%.
A well-known empirical approximation used to calculate the dew point, T d, given just the actual ("dry bulb") air temperature, T (in degrees Celsius) and relative humidity (in percent), RH, is the Magnus formula: (,) = + +; = (,) (,); where b = 17.625 and c = 243.04°C. [16]
When the two tendencies are in balance— and the air and food are stable—the air's relative humidity (expressed as a fraction instead of as a percentage) is taken to be the water activity, a w. Thus, water activity is the thermodynamic activity of water as solvent and the relative humidity of the surrounding air at equilibrium.
Plot of humidex depending on temperature and relative humidity. The humidex (short for humidity index) is an index number used by Canadian meteorologists to describe how hot the weather feels to the average person, by combining the effect of heat and humidity. The term humidex was coined in 1965. [1]
Effect of temperature and relative humidity on air density. The addition of water vapor to air (making the air humid) reduces the density of the air, which may at first appear counter-intuitive. This occurs because the molar mass of water vapor (18 g/mol) is less than the molar mass of dry air [note 2] (around 29 g/mol).
The saturation vapor density (SVD) is the maximum density of water vapor in air at a given temperature. [1] The concept is related to saturation vapor pressure (SVP). It can be used to calculate exact quantity of water vapor in the air from a relative humidity (RH = % local air humidity measured / local total air humidity possible ) Given an RH percentage, the density of water in the air is ...