Search results
Results from the WOW.Com Content Network
Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).
Clique-sums have a close connection with treewidth: If two graphs have treewidth at most k, so does their k-clique-sum.Every tree is the 1-clique-sum of its edges. Every series–parallel graph, or more generally every graph with treewidth at most two, may be formed as a 2-clique-sum of triangles.
A superscript is understood to be grouped as long as it continues in the form of a superscript. For example if an x has a superscript of the forma+b, the sum is the exponent. For example: x 2+3, it is understood that the 2+3 is grouped, and that the exponent is the sum of 2 and 3. These rules are understood by all mathematicians.
Another way to combine two (disjoint) posets is the ordinal sum [12] (or linear sum), [13] Z = X ⊕ Y, defined on the union of the underlying sets X and Y by the order a ≤ Z b if and only if: a, b ∈ X with a ≤ X b, or; a, b ∈ Y with a ≤ Y b, or; a ∈ X and b ∈ Y. If two posets are well-ordered, then so is their ordinal sum. [14]
In an S node, the associated graph is a cycle graph with three or more vertices and edges. This case is analogous to series composition in series–parallel graphs; the S stands for "series". [3] In a P node, the associated graph is a dipole graph, a multigraph with two vertices and three or more edges, the planar dual to a cycle graph
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three. This is established by the existence of a bijection (i.e., a one-to-one correspondence) between the two sets, such as the correspondence {1→4, 2→5, 3→6}.
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors.