enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hurwitz problem - Wikipedia

    en.wikipedia.org/wiki/Hurwitz_problem

    [3]: 127 We call a triple (,,) admissible for K if such an identity exists. [1]: 125 Trivial cases of admissible triples include (,,). The problem is uninteresting for K of characteristic 2, since over such fields every sum of squares is a square, and we exclude this case. It is believed that otherwise admissibility is independent of the field ...

  3. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.

  4. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    On the other hand, the primes 3, 7, 11, 19, 23 and 31 are all congruent to 3 modulo 4, and none of them can be expressed as the sum of two squares. This is the easier part of the theorem, and follows immediately from the observation that all squares are congruent to 0 (if number squared is even) or 1 (if number squared is odd) modulo 4.

  5. Pythagorean prime - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_prime

    The sum of one odd square and one even square is congruent to 1 mod 4, but there exist composite numbers such as 21 that are 1 mod 4 and yet cannot be represented as sums of two squares. Fermat's theorem on sums of two squares states that the prime numbers that can be represented as sums of two squares are exactly 2 and the odd primes congruent ...

  6. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    Of the primes occurring in this decomposition, 2, 5, and 7, only 7 is congruent to 3 modulo 4. Its exponent in the decomposition, 2, is even. Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the ...

  7. Legendre's three-square theorem - Wikipedia

    en.wikipedia.org/wiki/Legendre's_three-square...

    Pierre de Fermat gave a criterion for numbers of the form 8a + 1 and 8a + 3 to be sums of a square plus twice another square, but did not provide a proof. [1] N. Beguelin noticed in 1774 [2] that every positive integer which is neither of the form 8n + 7, nor of the form 4n, is the sum of three squares, but did not provide a satisfactory proof. [3]

  8. Sum of squares - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares

    Legendre's three-square theorem states which numbers can be expressed as the sum of three squares; Jacobi's four-square theorem gives the number of ways that a number can be represented as the sum of four squares. For the number of representations of a positive integer as a sum of squares of k integers, see Sum of squares function.

  9. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    Division is also not, in general, associative, meaning that when dividing multiple times, the order of division can change the result. [7] For example, (24 / 6) / 2 = 2 , but 24 / (6 / 2) = 8 (where the use of parentheses indicates that the operations inside parentheses are performed before the operations outside parentheses).