Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
These proofs work by comparing computations of single values in two different ways, one using Euler's Criterion and the other using the Binomial theorem. As an example of how Euler's criterion is used, we can use it to give a quick proof of the first supplemental case of determining for an odd prime p: By Euler's criterion () (), but since both ...
In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.
In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written (). It is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n; this coefficient can be ...
The Gaussian binomial coefficients are defined by: [1] = () (+) () ()where m and r are non-negative integers. If r > m, this evaluates to 0.For r = 0, the value is 1 since both the numerator and denominator are empty products.
Relationship to the binomial theorem [ edit ] The Leibniz rule bears a strong resemblance to the binomial theorem , and in fact the binomial theorem can be proven directly from the Leibniz rule by taking f ( x ) = e a x {\displaystyle f(x)=e^{ax}} and g ( x ) = e b x , {\displaystyle g(x)=e^{bx},} which gives
In mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials .