Search results
Results from the WOW.Com Content Network
Chemical engineers once used the kilogram-mole (notation kg-mol), which is defined as the number of entities in 12 kg of 12 C, and often referred to the mole as the gram-mole (notation g-mol), then defined as the number of entities in 12 g of 12 C, when dealing with laboratory data. [6]
1 kmol of any ideal gas equals 22.414 Nm 3 of that gas at 0 °C and 1 atmosphere of absolute pressure ... and 1 lbmol of any ideal gas equals 379.482 scf of that gas at 60 °F and 1 atmosphere of absolute pressure. Notes: kmol = kilomole or kilogram mole; lbmol = pound mole
= 46 kg/kmol = 46 g/mol Flow rate of flue gas = 20 cubic metres per minute = 20 m 3 /min The flue gas exits the furnace at 0 °C temperature and 101.325 kPa absolute pressure. The molar volume of a gas at 0 °C temperature and 101.325 kPa is 22.414 m 3 /kmol.
In the International System of Units (SI), the coherent unit of molar mass is kg/mol. However, for historical reasons, molar masses are almost always expressed in g/mol. The mole was defined in such a way that the molar mass of a compound, in g/mol, is numerically equal to the average mass of one molecule or formula unit, in daltons.
As typically measured, one kcal/mol represents a temperature increase of one degree Celsius in one liter of water (with a mass of 1 kg) resulting from the reaction of one mole of reagents. In SI units , one kilocalorie per mole is equal to 4.184 kilojoules per mole (kJ/mol), which comes to approximately 6.9477 × 10 −21 joules per molecule ...
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]